skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Brandt, Madeline"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract For$$g\ge 2$$and$$n\ge 0$$, let$$\mathcal {H}_{g,n}\subset \mathcal {M}_{g,n}$$denote the complex moduli stack ofn-marked smooth hyperelliptic curves of genusg. A normal crossings compactification of this space is provided by the theory of pointed admissible$$\mathbb {Z}/2\mathbb {Z}$$-covers. We explicitly determine the resulting dual complex, and we use this to define a graph complex which computes the weight zero compactly supported cohomology of$$\mathcal {H}_{g, n}$$. Using this graph complex, we give a sum-over-graphs formula for the$$S_n$$-equivariant weight zero compactly supported Euler characteristic of$$\mathcal {H}_{g, n}$$. This formula allows for the computer-aided calculation, for each$$g\le 7$$, of the generating function$$\mathsf {h}_g$$for these equivariant Euler characteristics for alln. More generally, we determine the dual complex of the boundary in any moduli space of pointed admissibleG-covers of genus zero curves, whenGis abelian, as a symmetric$$\Delta $$-complex. We use these complexes to generalize our formula for$$\mathsf {h}_g$$to moduli spaces ofn-pointed smooth abelian covers of genus zero curves. 
    more » « less
  2. We show that the non-Archimedean skeleton of the d d -th symmetric power of a smooth projective algebraic curve X X is naturally isomorphic to the d d -th symmetric power of the tropical curve that arises as the non-Archimedean skeleton of X X . The retraction to the skeleton is precisely the specialization map for divisors. Moreover, we show that the process of tropicalization naturally commutes with the diagonal morphisms and the Abel-Jacobi map and we exhibit a faithful tropicalization for symmetric powers of curves. Finally, we prove a version of the Bieri-Groves Theorem that allows us, under certain tropical genericity assumptions, to deduce a new tropical Riemann-Roch-Theorem for the tropicalization of linear systems. 
    more » « less
  3. Abstract We study Dressians of matroids using the initial matroids of Dress and Wenzel. These correspond to cells in regular matroid subdivisions of matroid polytopes. An efficient algorithm for computing Dressians is presented, and its implementation is applied to a range of interesting matroids. We give counterexamples to a few plausible statements about matroid subdivisions. 
    more » « less